| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|- 0 e. NN0 |
| 2 |
|
isrusgr |
|- ( ( G e. USGraph /\ 0 e. NN0 ) -> ( G RegUSGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( G e. USGraph -> ( G RegUSGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) |
| 4 |
|
ibar |
|- ( G e. USGraph -> ( G RegGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) |
| 5 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
| 6 |
|
uhgr0edg0rgrb |
|- ( G e. UHGraph -> ( G RegGraph 0 <-> ( Edg ` G ) = (/) ) ) |
| 7 |
5 6
|
syl |
|- ( G e. USGraph -> ( G RegGraph 0 <-> ( Edg ` G ) = (/) ) ) |
| 8 |
3 4 7
|
3bitr2d |
|- ( G e. USGraph -> ( G RegUSGraph 0 <-> ( Edg ` G ) = (/) ) ) |