| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgruhgr |  |-  ( G e. USGraph -> G e. UHGraph ) | 
						
							| 2 |  | uhgr0vb |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 3 | 1 2 | imbitrid |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 4 |  | simpl |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. W ) | 
						
							| 5 |  | simpr |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) | 
						
							| 6 | 4 5 | usgr0e |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) | 
						
							| 7 | 6 | ex |  |-  ( G e. W -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) | 
						
							| 9 | 3 8 | impbid |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |