| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uspgr1e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uspgr1e.a |  |-  ( ph -> A e. X ) | 
						
							| 3 |  | uspgr1e.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | uspgr1e.c |  |-  ( ph -> C e. V ) | 
						
							| 5 |  | uspgr1e.e |  |-  ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) | 
						
							| 6 |  | usgr1e.e |  |-  ( ph -> B =/= C ) | 
						
							| 7 | 1 2 3 4 5 | uspgr1e |  |-  ( ph -> G e. USPGraph ) | 
						
							| 8 |  | hashprg |  |-  ( ( B e. V /\ C e. V ) -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) | 
						
							| 9 | 3 4 8 | syl2anc |  |-  ( ph -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) | 
						
							| 10 | 6 9 | mpbid |  |-  ( ph -> ( # ` { B , C } ) = 2 ) | 
						
							| 11 |  | prex |  |-  { B , C } e. _V | 
						
							| 12 |  | fveqeq2 |  |-  ( x = { B , C } -> ( ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) ) | 
						
							| 13 | 11 12 | ralsn |  |-  ( A. x e. { { B , C } } ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) | 
						
							| 14 | 10 13 | sylibr |  |-  ( ph -> A. x e. { { B , C } } ( # ` x ) = 2 ) | 
						
							| 15 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 17 | 5 | rneqd |  |-  ( ph -> ran ( iEdg ` G ) = ran { <. A , { B , C } >. } ) | 
						
							| 18 |  | rnsnopg |  |-  ( A e. X -> ran { <. A , { B , C } >. } = { { B , C } } ) | 
						
							| 19 | 2 18 | syl |  |-  ( ph -> ran { <. A , { B , C } >. } = { { B , C } } ) | 
						
							| 20 | 16 17 19 | 3eqtrd |  |-  ( ph -> ( Edg ` G ) = { { B , C } } ) | 
						
							| 21 | 14 20 | raleqtrrdv |  |-  ( ph -> A. x e. ( Edg ` G ) ( # ` x ) = 2 ) | 
						
							| 22 |  | usgruspgrb |  |-  ( G e. USGraph <-> ( G e. USPGraph /\ A. x e. ( Edg ` G ) ( # ` x ) = 2 ) ) | 
						
							| 23 | 7 21 22 | sylanbrc |  |-  ( ph -> G e. USGraph ) |