| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgr1vr |  |-  ( ( A e. _V /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 2 | 1 | adantrl |  |-  ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 3 |  | simplrl |  |-  ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> G e. W ) | 
						
							| 4 |  | simpr |  |-  ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) | 
						
							| 5 | 3 4 | usgr0e |  |-  ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) | 
						
							| 6 | 5 | ex |  |-  ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) | 
						
							| 7 | 2 6 | impbid |  |-  ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 8 | 7 | ex |  |-  ( A e. _V -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) | 
						
							| 9 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 10 |  | simpl |  |-  ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> G e. W ) | 
						
							| 11 |  | simprr |  |-  ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( Vtx ` G ) = { A } ) | 
						
							| 12 |  | simpl |  |-  ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> { A } = (/) ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( Vtx ` G ) = (/) ) | 
						
							| 14 |  | usgr0vb |  |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 15 | 10 13 14 | syl2an2 |  |-  ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 16 | 15 | ex |  |-  ( { A } = (/) -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) | 
						
							| 17 | 9 16 | sylbi |  |-  ( -. A e. _V -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) | 
						
							| 18 | 8 17 | pm2.61i |  |-  ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |