| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fusgredgfi.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgredgfi.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | simpl |  |-  ( ( G e. USGraph /\ V = { v } ) -> G e. USGraph ) | 
						
							| 4 |  | vex |  |-  v e. _V | 
						
							| 5 | 1 | eqeq1i |  |-  ( V = { v } <-> ( Vtx ` G ) = { v } ) | 
						
							| 6 | 5 | biimpi |  |-  ( V = { v } -> ( Vtx ` G ) = { v } ) | 
						
							| 7 | 6 | adantl |  |-  ( ( G e. USGraph /\ V = { v } ) -> ( Vtx ` G ) = { v } ) | 
						
							| 8 |  | usgr1vr |  |-  ( ( v e. _V /\ ( Vtx ` G ) = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 9 | 4 7 8 | sylancr |  |-  ( ( G e. USGraph /\ V = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 10 | 3 9 | mpd |  |-  ( ( G e. USGraph /\ V = { v } ) -> ( iEdg ` G ) = (/) ) | 
						
							| 11 | 2 | eqeq1i |  |-  ( E = (/) <-> ( Edg ` G ) = (/) ) | 
						
							| 12 |  | usgruhgr |  |-  ( G e. USGraph -> G e. UHGraph ) | 
						
							| 13 |  | uhgriedg0edg0 |  |-  ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( G e. USGraph /\ V = { v } ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 16 | 11 15 | bitrid |  |-  ( ( G e. USGraph /\ V = { v } ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 17 | 10 16 | mpbird |  |-  ( ( G e. USGraph /\ V = { v } ) -> E = (/) ) | 
						
							| 18 | 17 | ex |  |-  ( G e. USGraph -> ( V = { v } -> E = (/) ) ) | 
						
							| 19 | 18 | exlimdv |  |-  ( G e. USGraph -> ( E. v V = { v } -> E = (/) ) ) | 
						
							| 20 | 1 | fvexi |  |-  V e. _V | 
						
							| 21 |  | hash1snb |  |-  ( V e. _V -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) | 
						
							| 22 | 20 21 | mp1i |  |-  ( G e. USGraph -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) | 
						
							| 23 | 2 | fvexi |  |-  E e. _V | 
						
							| 24 |  | hasheq0 |  |-  ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) | 
						
							| 25 | 23 24 | mp1i |  |-  ( G e. USGraph -> ( ( # ` E ) = 0 <-> E = (/) ) ) | 
						
							| 26 | 19 22 25 | 3imtr4d |  |-  ( G e. USGraph -> ( ( # ` V ) = 1 -> ( # ` E ) = 0 ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( G e. USGraph /\ ( # ` V ) = 1 ) -> ( # ` E ) = 0 ) |