Step |
Hyp |
Ref |
Expression |
1 |
|
fusgredgfi.v |
|- V = ( Vtx ` G ) |
2 |
|
fusgredgfi.e |
|- E = ( Edg ` G ) |
3 |
|
simpl |
|- ( ( G e. USGraph /\ V = { v } ) -> G e. USGraph ) |
4 |
|
vex |
|- v e. _V |
5 |
1
|
eqeq1i |
|- ( V = { v } <-> ( Vtx ` G ) = { v } ) |
6 |
5
|
biimpi |
|- ( V = { v } -> ( Vtx ` G ) = { v } ) |
7 |
6
|
adantl |
|- ( ( G e. USGraph /\ V = { v } ) -> ( Vtx ` G ) = { v } ) |
8 |
|
usgr1vr |
|- ( ( v e. _V /\ ( Vtx ` G ) = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
9 |
4 7 8
|
sylancr |
|- ( ( G e. USGraph /\ V = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
10 |
3 9
|
mpd |
|- ( ( G e. USGraph /\ V = { v } ) -> ( iEdg ` G ) = (/) ) |
11 |
2
|
eqeq1i |
|- ( E = (/) <-> ( Edg ` G ) = (/) ) |
12 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
13 |
|
uhgriedg0edg0 |
|- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
14 |
12 13
|
syl |
|- ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
15 |
14
|
adantr |
|- ( ( G e. USGraph /\ V = { v } ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
16 |
11 15
|
syl5bb |
|- ( ( G e. USGraph /\ V = { v } ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
17 |
10 16
|
mpbird |
|- ( ( G e. USGraph /\ V = { v } ) -> E = (/) ) |
18 |
17
|
ex |
|- ( G e. USGraph -> ( V = { v } -> E = (/) ) ) |
19 |
18
|
exlimdv |
|- ( G e. USGraph -> ( E. v V = { v } -> E = (/) ) ) |
20 |
1
|
fvexi |
|- V e. _V |
21 |
|
hash1snb |
|- ( V e. _V -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
22 |
20 21
|
mp1i |
|- ( G e. USGraph -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
23 |
2
|
fvexi |
|- E e. _V |
24 |
|
hasheq0 |
|- ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
25 |
23 24
|
mp1i |
|- ( G e. USGraph -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
26 |
19 22 25
|
3imtr4d |
|- ( G e. USGraph -> ( ( # ` V ) = 1 -> ( # ` E ) = 0 ) ) |
27 |
26
|
imp |
|- ( ( G e. USGraph /\ ( # ` V ) = 1 ) -> ( # ` E ) = 0 ) |