| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgruhgr |  |-  ( G e. USGraph -> G e. UHGraph ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> G e. UHGraph ) | 
						
							| 3 |  | fveq2 |  |-  ( ( Vtx ` G ) = { A } -> ( # ` ( Vtx ` G ) ) = ( # ` { A } ) ) | 
						
							| 4 |  | hashsng |  |-  ( A e. X -> ( # ` { A } ) = 1 ) | 
						
							| 5 | 3 4 | sylan9eqr |  |-  ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( # ` ( Vtx ` G ) ) = 1 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( # ` ( Vtx ` G ) ) = 1 ) | 
						
							| 7 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 8 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 9 | 7 8 | usgrislfuspgr |  |-  ( G e. USGraph <-> ( G e. USPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) | 
						
							| 10 | 9 | simprbi |  |-  ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) | 
						
							| 12 |  | eqid |  |-  { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } = { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } | 
						
							| 13 | 7 8 12 | lfuhgr1v0e |  |-  ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) -> ( Edg ` G ) = (/) ) | 
						
							| 14 | 2 6 11 13 | syl3anc |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( Edg ` G ) = (/) ) | 
						
							| 15 |  | uhgriedg0edg0 |  |-  ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 16 | 1 15 | syl |  |-  ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 18 | 14 17 | mpbid |  |-  ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) = (/) ) | 
						
							| 19 | 18 | ex |  |-  ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |