Step |
Hyp |
Ref |
Expression |
1 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
2 |
1
|
adantl |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> G e. UHGraph ) |
3 |
|
fveq2 |
|- ( ( Vtx ` G ) = { A } -> ( # ` ( Vtx ` G ) ) = ( # ` { A } ) ) |
4 |
|
hashsng |
|- ( A e. X -> ( # ` { A } ) = 1 ) |
5 |
3 4
|
sylan9eqr |
|- ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( # ` ( Vtx ` G ) ) = 1 ) |
6 |
5
|
adantr |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( # ` ( Vtx ` G ) ) = 1 ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
9 |
7 8
|
usgrislfuspgr |
|- ( G e. USGraph <-> ( G e. USPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
10 |
9
|
simprbi |
|- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
11 |
10
|
adantl |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
12 |
|
eqid |
|- { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } = { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } |
13 |
7 8 12
|
lfuhgr1v0e |
|- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) -> ( Edg ` G ) = (/) ) |
14 |
2 6 11 13
|
syl3anc |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( Edg ` G ) = (/) ) |
15 |
|
uhgriedg0edg0 |
|- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
16 |
1 15
|
syl |
|- ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
17 |
16
|
adantl |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
18 |
14 17
|
mpbid |
|- ( ( ( A e. X /\ ( Vtx ` G ) = { A } ) /\ G e. USGraph ) -> ( iEdg ` G ) = (/) ) |
19 |
18
|
ex |
|- ( ( A e. X /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |