Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2pthlem.v |
|- V = ( Vtx ` G ) |
2 |
|
usgr2pthlem.i |
|- I = ( iEdg ` G ) |
3 |
1 2
|
usgr2pth |
|- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
4 |
|
r19.42v |
|- ( E. y e. ( V \ { x , z } ) ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
5 |
|
rexdifpr |
|- ( E. y e. ( V \ { x , z } ) ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
6 |
4 5
|
bitr3i |
|- ( ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
7 |
6
|
rexbii |
|- ( E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. z e. V E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
8 |
|
rexcom |
|- ( E. z e. V E. y e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. y e. V E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
9 |
|
df-3an |
|- ( ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( ( y =/= x /\ y =/= z ) /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
10 |
|
anass |
|- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( y =/= x /\ y =/= z ) /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
11 |
|
anass |
|- ( ( ( ( z =/= x /\ z =/= y ) /\ y =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( z =/= x /\ z =/= y ) /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
12 |
|
anass |
|- ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) <-> ( y =/= x /\ ( y =/= z /\ z =/= x ) ) ) |
13 |
|
ancom |
|- ( ( y =/= x /\ ( y =/= z /\ z =/= x ) ) <-> ( ( y =/= z /\ z =/= x ) /\ y =/= x ) ) |
14 |
|
necom |
|- ( y =/= z <-> z =/= y ) |
15 |
14
|
anbi2ci |
|- ( ( y =/= z /\ z =/= x ) <-> ( z =/= x /\ z =/= y ) ) |
16 |
15
|
anbi1i |
|- ( ( ( y =/= z /\ z =/= x ) /\ y =/= x ) <-> ( ( z =/= x /\ z =/= y ) /\ y =/= x ) ) |
17 |
12 13 16
|
3bitri |
|- ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) <-> ( ( z =/= x /\ z =/= y ) /\ y =/= x ) ) |
18 |
17
|
anbi1i |
|- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( ( ( z =/= x /\ z =/= y ) /\ y =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
19 |
|
df-3an |
|- ( ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( ( z =/= x /\ z =/= y ) /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
20 |
11 18 19
|
3bitr4i |
|- ( ( ( ( y =/= x /\ y =/= z ) /\ z =/= x ) /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
21 |
9 10 20
|
3bitr2i |
|- ( ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
22 |
21
|
rexbii |
|- ( E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. z e. V ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
23 |
|
rexdifpr |
|- ( E. z e. ( V \ { x , y } ) ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. z e. V ( z =/= x /\ z =/= y /\ ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
24 |
|
r19.42v |
|- ( E. z e. ( V \ { x , y } ) ( y =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
25 |
22 23 24
|
3bitr2i |
|- ( E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
26 |
25
|
rexbii |
|- ( E. y e. V E. z e. V ( y =/= x /\ y =/= z /\ ( z =/= x /\ ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
27 |
7 8 26
|
3bitri |
|- ( E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
28 |
|
rexdifsn |
|- ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. z e. V ( z =/= x /\ E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
29 |
|
rexdifsn |
|- ( E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. V ( y =/= x /\ E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
30 |
27 28 29
|
3bitr4i |
|- ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) |
31 |
30
|
a1i |
|- ( ( G e. USGraph /\ x e. V ) -> ( E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
32 |
31
|
rexbidva |
|- ( G e. USGraph -> ( E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) <-> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) |
33 |
32
|
3anbi3d |
|- ( G e. USGraph -> ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. z e. ( V \ { x } ) E. y e. ( V \ { x , z } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |
34 |
3 33
|
bitrd |
|- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = z /\ ( P ` 2 ) = y ) /\ ( ( I ` ( F ` 0 ) ) = { x , z } /\ ( I ` ( F ` 1 ) ) = { z , y } ) ) ) ) ) |