Metamath Proof Explorer


Theorem usgr2pthspth

Description: In a simple graph, any path of length 2 is a simple path. (Contributed by Alexander van der Vekens, 25-Jan-2018) (Revised by AV, 5-Jun-2021)

Ref Expression
Assertion usgr2pthspth
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Paths ` G ) P <-> F ( SPaths ` G ) P ) )

Proof

Step Hyp Ref Expression
1 pthistrl
 |-  ( F ( Paths ` G ) P -> F ( Trails ` G ) P )
2 usgr2trlspth
 |-  ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P <-> F ( SPaths ` G ) P ) )
3 1 2 syl5ib
 |-  ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Paths ` G ) P -> F ( SPaths ` G ) P ) )
4 spthispth
 |-  ( F ( SPaths ` G ) P -> F ( Paths ` G ) P )
5 3 4 impbid1
 |-  ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Paths ` G ) P <-> F ( SPaths ` G ) P ) )