Step |
Hyp |
Ref |
Expression |
1 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
4 |
2 3
|
upgrf1istrl |
|- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
5 |
1 4
|
syl |
|- ( G e. USGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
6 |
|
eqidd |
|- ( ( # ` F ) = 2 -> F = F ) |
7 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
8 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
9 |
7 8
|
eqtrdi |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
10 |
|
eqidd |
|- ( ( # ` F ) = 2 -> dom ( iEdg ` G ) = dom ( iEdg ` G ) ) |
11 |
6 9 10
|
f1eq123d |
|- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) <-> F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) ) ) |
12 |
9
|
raleqdv |
|- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
13 |
|
2wlklem |
|- ( A. i e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
14 |
12 13
|
bitrdi |
|- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
15 |
11 14
|
anbi12d |
|- ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
16 |
15
|
adantl |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
17 |
|
c0ex |
|- 0 e. _V |
18 |
|
1ex |
|- 1 e. _V |
19 |
17 18
|
pm3.2i |
|- ( 0 e. _V /\ 1 e. _V ) |
20 |
|
0ne1 |
|- 0 =/= 1 |
21 |
|
eqid |
|- { 0 , 1 } = { 0 , 1 } |
22 |
21
|
f12dfv |
|- ( ( ( 0 e. _V /\ 1 e. _V ) /\ 0 =/= 1 ) -> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) <-> ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
23 |
19 20 22
|
mp2an |
|- ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) <-> ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
24 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
25 |
3 24
|
usgrf1oedg |
|- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
26 |
|
f1of1 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) |
27 |
|
id |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> F : { 0 , 1 } --> dom ( iEdg ` G ) ) |
28 |
17
|
prid1 |
|- 0 e. { 0 , 1 } |
29 |
28
|
a1i |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> 0 e. { 0 , 1 } ) |
30 |
27 29
|
ffvelrnd |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( F ` 0 ) e. dom ( iEdg ` G ) ) |
31 |
18
|
prid2 |
|- 1 e. { 0 , 1 } |
32 |
31
|
a1i |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> 1 e. { 0 , 1 } ) |
33 |
27 32
|
ffvelrnd |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( F ` 1 ) e. dom ( iEdg ` G ) ) |
34 |
30 33
|
jca |
|- ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) |
35 |
34
|
anim1ci |
|- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) /\ ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) ) |
36 |
|
f1veqaeq |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) /\ ( ( F ` 0 ) e. dom ( iEdg ` G ) /\ ( F ` 1 ) e. dom ( iEdg ` G ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( F ` 0 ) = ( F ` 1 ) ) ) |
37 |
35 36
|
syl |
|- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( F ` 0 ) = ( F ` 1 ) ) ) |
38 |
37
|
necon3d |
|- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) ) ) |
39 |
|
simpl |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
40 |
|
simpr |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) |
41 |
39 40
|
neeq12d |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
42 |
|
preq1 |
|- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } ) |
43 |
|
prcom |
|- { ( P ` 2 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } |
44 |
42 43
|
eqtrdi |
|- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
45 |
44
|
necon3i |
|- ( { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) =/= ( P ` 2 ) ) |
46 |
41 45
|
syl6bi |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
47 |
46
|
com12 |
|- ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
48 |
47
|
a1d |
|- ( ( ( iEdg ` G ) ` ( F ` 0 ) ) =/= ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
49 |
38 48
|
syl6 |
|- ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
50 |
49
|
expcom |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( F : { 0 , 1 } --> dom ( iEdg ` G ) -> ( ( F ` 0 ) =/= ( F ` 1 ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) ) |
51 |
50
|
impd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( G e. USGraph -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
52 |
51
|
com23 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) -> ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
53 |
26 52
|
syl |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) ) |
54 |
25 53
|
mpcom |
|- ( G e. USGraph -> ( ( F : { 0 , 1 } --> dom ( iEdg ` G ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
55 |
23 54
|
syl5bi |
|- ( G e. USGraph -> ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
56 |
55
|
impd |
|- ( G e. USGraph -> ( ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
57 |
56
|
adantr |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : { 0 , 1 } -1-1-> dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
58 |
16 57
|
sylbid |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
59 |
58
|
com12 |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
60 |
59
|
3adant2 |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
61 |
60
|
expdcom |
|- ( G e. USGraph -> ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
62 |
61
|
com23 |
|- ( G e. USGraph -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
63 |
5 62
|
sylbid |
|- ( G e. USGraph -> ( F ( Trails ` G ) P -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
64 |
63
|
com23 |
|- ( G e. USGraph -> ( ( # ` F ) = 2 -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
65 |
64
|
imp |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |