| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 4 |
2 3
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 5 |
1 4
|
syl |
|- ( G e. USGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 6 |
|
2wlklem |
|- ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 7 |
|
simplll |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> G e. USGraph ) |
| 8 |
|
fvex |
|- ( P ` 0 ) e. _V |
| 9 |
3
|
usgrnloopv |
|- ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 11 |
|
fvex |
|- ( P ` 1 ) e. _V |
| 12 |
3
|
usgrnloopv |
|- ( ( G e. USGraph /\ ( P ` 1 ) e. _V ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 13 |
7 11 12
|
sylancl |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 14 |
10 13
|
anim12d |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 15 |
|
fveqeq2 |
|- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 16 |
|
eqtr2 |
|- ( ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 17 |
|
prcom |
|- { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 1 ) } |
| 18 |
17
|
eqeq2i |
|- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } <-> { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 19 |
|
fvex |
|- ( P ` 2 ) e. _V |
| 20 |
8 19
|
preqr1 |
|- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 2 ) , ( P ` 1 ) } -> ( P ` 0 ) = ( P ` 2 ) ) |
| 21 |
18 20
|
sylbi |
|- ( { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) |
| 22 |
16 21
|
syl |
|- ( ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) = ( P ` 2 ) ) |
| 23 |
22
|
ex |
|- ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 24 |
15 23
|
biimtrdi |
|- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( P ` 0 ) = ( P ` 2 ) ) ) ) |
| 25 |
24
|
impd |
|- ( ( F ` 0 ) = ( F ` 1 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 26 |
25
|
com12 |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( F ` 0 ) = ( F ` 1 ) -> ( P ` 0 ) = ( P ` 2 ) ) ) |
| 27 |
26
|
necon3d |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 28 |
27
|
com12 |
|- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 30 |
|
simpl |
|- ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 31 |
30
|
adantl |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 32 |
|
simpl |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
| 33 |
|
simprr |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( P ` 1 ) =/= ( P ` 2 ) ) |
| 34 |
31 32 33
|
3jca |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 35 |
29 34
|
jctild |
|- ( ( ( P ` 0 ) =/= ( P ` 2 ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 36 |
35
|
ex |
|- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 37 |
36
|
com23 |
|- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 40 |
14 39
|
mpdd |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 41 |
6 40
|
biimtrid |
|- ( ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) /\ P : ( 0 ... 2 ) --> ( Vtx ` G ) ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) |
| 42 |
41
|
ex |
|- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 43 |
42
|
com23 |
|- ( ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) /\ ( P ` 0 ) =/= ( P ` 2 ) ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 44 |
43
|
ex |
|- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 45 |
|
fveq2 |
|- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
| 46 |
45
|
neeq2d |
|- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
| 47 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
| 48 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 49 |
47 48
|
eqtrdi |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
| 50 |
49
|
raleqdv |
|- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 51 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
| 52 |
51
|
feq2d |
|- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) |
| 53 |
52
|
imbi1d |
|- ( ( # ` F ) = 2 -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) <-> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 54 |
50 53
|
imbi12d |
|- ( ( # ` F ) = 2 -> ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) <-> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 55 |
46 54
|
imbi12d |
|- ( ( # ` F ) = 2 -> ( ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) <-> ( ( P ` 0 ) =/= ( P ` 2 ) -> ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 56 |
44 55
|
syl5ibrcom |
|- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 57 |
56
|
impd |
|- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 58 |
57
|
com24 |
|- ( ( G e. USGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) |
| 59 |
58
|
ex |
|- ( G e. USGraph -> ( F e. Word dom ( iEdg ` G ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) ) ) |
| 60 |
59
|
3impd |
|- ( G e. USGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 61 |
5 60
|
sylbid |
|- ( G e. USGraph -> ( F ( Walks ` G ) P -> ( ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) ) ) |
| 62 |
61
|
imp31 |
|- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |