Step |
Hyp |
Ref |
Expression |
1 |
|
simpl31 |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Walks ` G ) P ) |
2 |
|
simp2 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
3 |
|
simp3 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
4 |
2 3
|
neeq12d |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> A =/= B ) ) |
5 |
4
|
bicomd |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
6 |
5
|
3anbi3d |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) <-> ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
7 |
|
usgr2wlkspthlem1 |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) |
8 |
7
|
ex |
|- ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) |
10 |
6 9
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) |
12 |
11
|
imp |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' F ) |
13 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
14 |
1 12 13
|
sylanbrc |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Trails ` G ) P ) |
15 |
|
usgr2wlkspthlem2 |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) |
16 |
15
|
ex |
|- ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) |
18 |
6 17
|
sylbid |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) |
19 |
18
|
3ad2ant3 |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) |
20 |
19
|
imp |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' P ) |
21 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
22 |
14 20 21
|
sylanbrc |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( SPaths ` G ) P ) |
23 |
|
3simpc |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
24 |
23
|
3ad2ant3 |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
26 |
|
3anass |
|- ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
27 |
22 25 26
|
sylanbrc |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
28 |
|
3simpa |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
29 |
28
|
adantr |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
30 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
31 |
30
|
isspthonpth |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
32 |
29 31
|
syl |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
33 |
27 32
|
mpbird |
|- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( A ( SPathsOn ` G ) B ) P ) |
34 |
33
|
ex |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> F ( A ( SPathsOn ` G ) B ) P ) ) |
35 |
30
|
wlkonprop |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
36 |
|
3simpc |
|- ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
37 |
36
|
3anim1i |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
38 |
35 37
|
syl |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
39 |
34 38
|
syl11 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P -> F ( A ( SPathsOn ` G ) B ) P ) ) |
40 |
|
spthonpthon |
|- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |
41 |
|
pthontrlon |
|- ( F ( A ( PathsOn ` G ) B ) P -> F ( A ( TrailsOn ` G ) B ) P ) |
42 |
|
trlsonwlkon |
|- ( F ( A ( TrailsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
43 |
40 41 42
|
3syl |
|- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
44 |
39 43
|
impbid1 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |