| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl31 |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Walks ` G ) P ) | 
						
							| 2 |  | simp2 |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) | 
						
							| 3 |  | simp3 |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) | 
						
							| 4 | 2 3 | neeq12d |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> A =/= B ) ) | 
						
							| 5 | 4 | bicomd |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) | 
						
							| 6 | 5 | 3anbi3d |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) <-> ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) | 
						
							| 7 |  | usgr2wlkspthlem1 |  |-  ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) | 
						
							| 8 | 7 | ex |  |-  ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) | 
						
							| 10 | 6 9 | sylbid |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' F ) | 
						
							| 13 |  | istrl |  |-  ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) | 
						
							| 14 | 1 12 13 | sylanbrc |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Trails ` G ) P ) | 
						
							| 15 |  | usgr2wlkspthlem2 |  |-  ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) | 
						
							| 16 | 15 | ex |  |-  ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) | 
						
							| 18 | 6 17 | sylbid |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) | 
						
							| 19 | 18 | 3ad2ant3 |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' P ) | 
						
							| 21 |  | isspth |  |-  ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) | 
						
							| 22 | 14 20 21 | sylanbrc |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( SPaths ` G ) P ) | 
						
							| 23 |  | 3simpc |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) | 
						
							| 26 |  | 3anass |  |-  ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 27 | 22 25 26 | sylanbrc |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) | 
						
							| 28 |  | 3simpa |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 30 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 31 | 30 | isspthonpth |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 32 | 29 31 | syl |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 33 | 27 32 | mpbird |  |-  ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( A ( SPathsOn ` G ) B ) P ) | 
						
							| 34 | 33 | ex |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> F ( A ( SPathsOn ` G ) B ) P ) ) | 
						
							| 35 | 30 | wlkonprop |  |-  ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 36 |  | 3simpc |  |-  ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 37 | 36 | 3anim1i |  |-  ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 38 | 35 37 | syl |  |-  ( F ( A ( WalksOn ` G ) B ) P -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 39 | 34 38 | syl11 |  |-  ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P -> F ( A ( SPathsOn ` G ) B ) P ) ) | 
						
							| 40 |  | spthonpthon |  |-  ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) | 
						
							| 41 |  | pthontrlon |  |-  ( F ( A ( PathsOn ` G ) B ) P -> F ( A ( TrailsOn ` G ) B ) P ) | 
						
							| 42 |  | trlsonwlkon |  |-  ( F ( A ( TrailsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) | 
						
							| 43 | 40 41 42 | 3syl |  |-  ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) | 
						
							| 44 | 39 43 | impbid1 |  |-  ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |