Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> G e. USGraph ) |
2 |
1
|
anim2i |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( F ( Walks ` G ) P /\ G e. USGraph ) ) |
3 |
2
|
ancomd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( G e. USGraph /\ F ( Walks ` G ) P ) ) |
4 |
|
3simpc |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
5 |
4
|
adantl |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
6 |
|
usgr2wlkneq |
|- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
7 |
3 5 6
|
syl2anc |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
8 |
|
fvexd |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 0 ) e. _V ) |
9 |
|
fvexd |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 1 ) e. _V ) |
10 |
|
simpr |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 0 ) =/= ( F ` 1 ) ) |
11 |
8 9 10
|
3jca |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( F ` 0 ) e. _V /\ ( F ` 1 ) e. _V /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
12 |
|
funcnvs2 |
|- ( ( ( F ` 0 ) e. _V /\ ( F ` 1 ) e. _V /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
13 |
7 11 12
|
3syl |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
14 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
15 |
14
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
16 |
|
simp2 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( # ` F ) = 2 ) |
17 |
|
wrdlen2s2 |
|- ( ( F e. Word dom ( iEdg ` G ) /\ ( # ` F ) = 2 ) -> F = <" ( F ` 0 ) ( F ` 1 ) "> ) |
18 |
15 16 17
|
syl2an |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> F = <" ( F ` 0 ) ( F ` 1 ) "> ) |
19 |
18
|
cnveqd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> `' F = `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
20 |
19
|
funeqd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( Fun `' F <-> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) ) |
21 |
13 20
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) |