Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
|
ausgrusgri.1 |
|- O = { f | f : dom f -1-1-> ran f } |
3 |
1 2
|
ausgrusgri |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) |
4 |
3
|
3exp |
|- ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( ( iEdg ` H ) e. O -> H e. USGraph ) ) ) |
5 |
4
|
com23 |
|- ( H e. W -> ( ( iEdg ` H ) e. O -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) ) |
6 |
5
|
imp |
|- ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) |
7 |
1
|
usgrausgri |
|- ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |
8 |
6 7
|
impbid1 |
|- ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> H e. USGraph ) ) |