Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
|
usgredgss |
|- ( H e. USGraph -> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
3 |
|
fvex |
|- ( Vtx ` H ) e. _V |
4 |
|
fvex |
|- ( Edg ` H ) e. _V |
5 |
1
|
isausgr |
|- ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
6 |
3 4 5
|
mp2an |
|- ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
7 |
2 6
|
sylibr |
|- ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |