Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2.e |
|- E = ( iEdg ` G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2 1
|
usgrf |
|- ( G e. USGraph -> E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
4 |
|
f1f |
|- ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> E : dom E --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
5 |
3 4
|
syl |
|- ( G e. USGraph -> E : dom E --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
6 |
5
|
ffvelrnda |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
7 |
|
fveq2 |
|- ( x = ( E ` X ) -> ( # ` x ) = ( # ` ( E ` X ) ) ) |
8 |
7
|
eqeq1d |
|- ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) ) |
9 |
8
|
elrab |
|- ( ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` ( E ` X ) ) = 2 ) ) |
10 |
9
|
simprbi |
|- ( ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 ) |
11 |
6 10
|
syl |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |