Metamath Proof Explorer


Theorem usgredg2vtx

Description: For a vertex incident to an edge there is another vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 5-Dec-2020)

Ref Expression
Assertion usgredg2vtx
|- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } )

Proof

Step Hyp Ref Expression
1 usgrupgr
 |-  ( G e. USGraph -> G e. UPGraph )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
4 2 3 upgredg2vtx
 |-  ( ( G e. UPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } )
5 1 4 syl3an1
 |-  ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } )