Metamath Proof Explorer


Theorem usgredg2vtxeu

Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 6-Dec-2020)

Ref Expression
Assertion usgredg2vtxeu
|- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } )

Proof

Step Hyp Ref Expression
1 usgruspgr
 |-  ( G e. USGraph -> G e. USPGraph )
2 uspgredg2vtxeu
 |-  ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } )
3 1 2 syl3an1
 |-  ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } )