Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg3.v |
|- V = ( Vtx ` G ) |
2 |
|
usgredg3.e |
|- E = ( iEdg ` G ) |
3 |
|
usgrfun |
|- ( G e. USGraph -> Fun ( iEdg ` G ) ) |
4 |
2
|
funeqi |
|- ( Fun E <-> Fun ( iEdg ` G ) ) |
5 |
3 4
|
sylibr |
|- ( G e. USGraph -> Fun E ) |
6 |
|
fvelrn |
|- ( ( Fun E /\ X e. dom E ) -> ( E ` X ) e. ran E ) |
7 |
5 6
|
sylan |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ran E ) |
8 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
9 |
8
|
a1i |
|- ( G e. USGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
10 |
2
|
eqcomi |
|- ( iEdg ` G ) = E |
11 |
10
|
rneqi |
|- ran ( iEdg ` G ) = ran E |
12 |
9 11
|
eqtrdi |
|- ( G e. USGraph -> ( Edg ` G ) = ran E ) |
13 |
12
|
adantr |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( Edg ` G ) = ran E ) |
14 |
7 13
|
eleqtrrd |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ( Edg ` G ) ) |
15 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
16 |
1 15
|
usgredg |
|- ( ( G e. USGraph /\ ( E ` X ) e. ( Edg ` G ) ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) ) |
17 |
14 16
|
syldan |
|- ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) ) |