Metamath Proof Explorer


Theorem usgredg3

Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)

Ref Expression
Hypotheses usgredg3.v
|- V = ( Vtx ` G )
usgredg3.e
|- E = ( iEdg ` G )
Assertion usgredg3
|- ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) )

Proof

Step Hyp Ref Expression
1 usgredg3.v
 |-  V = ( Vtx ` G )
2 usgredg3.e
 |-  E = ( iEdg ` G )
3 usgrfun
 |-  ( G e. USGraph -> Fun ( iEdg ` G ) )
4 2 funeqi
 |-  ( Fun E <-> Fun ( iEdg ` G ) )
5 3 4 sylibr
 |-  ( G e. USGraph -> Fun E )
6 fvelrn
 |-  ( ( Fun E /\ X e. dom E ) -> ( E ` X ) e. ran E )
7 5 6 sylan
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ran E )
8 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
9 8 a1i
 |-  ( G e. USGraph -> ( Edg ` G ) = ran ( iEdg ` G ) )
10 2 eqcomi
 |-  ( iEdg ` G ) = E
11 10 rneqi
 |-  ran ( iEdg ` G ) = ran E
12 9 11 eqtrdi
 |-  ( G e. USGraph -> ( Edg ` G ) = ran E )
13 12 adantr
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( Edg ` G ) = ran E )
14 7 13 eleqtrrd
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ( Edg ` G ) )
15 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
16 1 15 usgredg
 |-  ( ( G e. USGraph /\ ( E ` X ) e. ( Edg ` G ) ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) )
17 14 16 syldan
 |-  ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. y e. V ( x =/= y /\ ( E ` X ) = { x , y } ) )