Step |
Hyp |
Ref |
Expression |
1 |
|
usgredgffibi.I |
|- I = ( iEdg ` G ) |
2 |
|
usgredgffibi.e |
|- E = ( Edg ` G ) |
3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
4 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
5 |
4
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
6 |
2 3 5
|
3eqtri |
|- E = ran I |
7 |
6
|
eleq1i |
|- ( E e. Fin <-> ran I e. Fin ) |
8 |
1
|
fvexi |
|- I e. _V |
9 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
10 |
9 1
|
usgrfs |
|- ( G e. USGraph -> I : dom I -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
11 |
|
f1vrnfibi |
|- ( ( I e. _V /\ I : dom I -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) -> ( I e. Fin <-> ran I e. Fin ) ) |
12 |
8 10 11
|
sylancr |
|- ( G e. USGraph -> ( I e. Fin <-> ran I e. Fin ) ) |
13 |
7 12
|
bitr4id |
|- ( G e. USGraph -> ( E e. Fin <-> I e. Fin ) ) |