Metamath Proof Explorer


Theorem usgredgleord

Description: In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 6-Dec-2020)

Ref Expression
Hypotheses usgredgleord.v
|- V = ( Vtx ` G )
usgredgleord.e
|- E = ( Edg ` G )
Assertion usgredgleord
|- ( ( G e. USGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) )

Proof

Step Hyp Ref Expression
1 usgredgleord.v
 |-  V = ( Vtx ` G )
2 usgredgleord.e
 |-  E = ( Edg ` G )
3 usgruspgr
 |-  ( G e. USGraph -> G e. USPGraph )
4 1 2 uspgredgleord
 |-  ( ( G e. USPGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) )
5 3 4 sylan
 |-  ( ( G e. USGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) )