Metamath Proof Explorer


Theorem usgredgne

Description: An edge of a simple graph always connects two different vertices. Analogue of usgrnloopv resp. usgrnloop . (Contributed by Alexander van der Vekens, 2-Sep-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Hypothesis usgredgne.v
|- E = ( Edg ` G )
Assertion usgredgne
|- ( ( G e. USGraph /\ { M , N } e. E ) -> M =/= N )

Proof

Step Hyp Ref Expression
1 usgredgne.v
 |-  E = ( Edg ` G )
2 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
3 1 umgredgne
 |-  ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N )
4 2 3 sylan
 |-  ( ( G e. USGraph /\ { M , N } e. E ) -> M =/= N )