Description: An edge of a simple graph always connects two different vertices. Analogue of usgrnloopv resp. usgrnloop . (Contributed by Alexander van der Vekens, 2-Sep-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgredgne.v | |- E = ( Edg ` G ) |
|
| Assertion | usgredgne | |- ( ( G e. USGraph /\ { M , N } e. E ) -> M =/= N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgne.v | |- E = ( Edg ` G ) |
|
| 2 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 3 | 1 | umgredgne | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N ) |
| 4 | 2 3 | sylan | |- ( ( G e. USGraph /\ { M , N } e. E ) -> M =/= N ) |