Metamath Proof Explorer


Theorem usgredgppr

Description: An edge of a simple graph is a proper pair, i.e. a set containing two different elements (the endvertices of the edge). Analogue of usgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 9-Jan-2020) (Revised by AV, 23-Oct-2020)

Ref Expression
Hypothesis usgredgppr.e
|- E = ( Edg ` G )
Assertion usgredgppr
|- ( ( G e. USGraph /\ C e. E ) -> ( # ` C ) = 2 )

Proof

Step Hyp Ref Expression
1 usgredgppr.e
 |-  E = ( Edg ` G )
2 1 eleq2i
 |-  ( C e. E <-> C e. ( Edg ` G ) )
3 edgusgr
 |-  ( ( G e. USGraph /\ C e. ( Edg ` G ) ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) )
4 2 3 sylan2b
 |-  ( ( G e. USGraph /\ C e. E ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) )
5 4 simprd
 |-  ( ( G e. USGraph /\ C e. E ) -> ( # ` C ) = 2 )