Metamath Proof Explorer


Theorem usgredgprv

Description: In a simple graph, an edge is an unordered pair of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypotheses usgredg2.e
|- E = ( iEdg ` G )
usgredgprv.v
|- V = ( Vtx ` G )
Assertion usgredgprv
|- ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) )

Proof

Step Hyp Ref Expression
1 usgredg2.e
 |-  E = ( iEdg ` G )
2 usgredgprv.v
 |-  V = ( Vtx ` G )
3 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
4 1 2 umgredgprv
 |-  ( ( G e. UMGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) )
5 3 4 sylan
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) )