Description: In a simple graph, an edge is an unordered pair of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2.e | |- E = ( iEdg ` G ) |
|
| usgredgprv.v | |- V = ( Vtx ` G ) |
||
| Assertion | usgredgprv | |- ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2.e | |- E = ( iEdg ` G ) |
|
| 2 | usgredgprv.v | |- V = ( Vtx ` G ) |
|
| 3 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 4 | 1 2 | umgredgprv | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |
| 5 | 3 4 | sylan | |- ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |