| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgredg2.e |
|- E = ( iEdg ` G ) |
| 2 |
|
usgredgprv.v |
|- V = ( Vtx ` G ) |
| 3 |
1 2
|
usgrss |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |
| 4 |
1
|
usgredg2 |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |
| 5 |
|
sseq1 |
|- ( ( E ` X ) = { M , N } -> ( ( E ` X ) C_ V <-> { M , N } C_ V ) ) |
| 6 |
|
fveq2 |
|- ( ( E ` X ) = { M , N } -> ( # ` ( E ` X ) ) = ( # ` { M , N } ) ) |
| 7 |
6
|
eqeq1d |
|- ( ( E ` X ) = { M , N } -> ( ( # ` ( E ` X ) ) = 2 <-> ( # ` { M , N } ) = 2 ) ) |
| 8 |
5 7
|
anbi12d |
|- ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) <-> ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) ) ) |
| 9 |
|
eqid |
|- { M , N } = { M , N } |
| 10 |
9
|
hashprdifel |
|- ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) |
| 11 |
|
prssg |
|- ( ( M e. { M , N } /\ N e. { M , N } ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) |
| 12 |
11
|
3adant3 |
|- ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) |
| 13 |
12
|
biimprd |
|- ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) |
| 14 |
10 13
|
syl |
|- ( ( # ` { M , N } ) = 2 -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) |
| 15 |
14
|
impcom |
|- ( ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) -> ( M e. V /\ N e. V ) ) |
| 16 |
8 15
|
biimtrdi |
|- ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( M e. V /\ N e. V ) ) ) |
| 17 |
16
|
com12 |
|- ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |
| 18 |
3 4 17
|
syl2anc |
|- ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |