Metamath Proof Explorer


Theorem usgreqdrusgr

Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v
|- V = ( Vtx ` G )
isrusgr0.d
|- D = ( VtxDeg ` G )
Assertion usgreqdrusgr
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K )

Proof

Step Hyp Ref Expression
1 isrusgr0.v
 |-  V = ( Vtx ` G )
2 isrusgr0.d
 |-  D = ( VtxDeg ` G )
3 1 2 isrusgr0
 |-  ( ( G e. USGraph /\ K e. NN0* ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) )
4 3 3adant3
 |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) )
5 4 ibir
 |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) -> G RegUSGraph K )