Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexi.p |
|- P = { x e. ~P V | ( # ` x ) = 2 } |
2 |
1
|
usgrexilem |
|- ( V e. W -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
3 |
1
|
cusgrexilem1 |
|- ( V e. W -> ( _I |` P ) e. _V ) |
4 |
|
opiedgfv |
|- ( ( V e. W /\ ( _I |` P ) e. _V ) -> ( iEdg ` <. V , ( _I |` P ) >. ) = ( _I |` P ) ) |
5 |
3 4
|
mpdan |
|- ( V e. W -> ( iEdg ` <. V , ( _I |` P ) >. ) = ( _I |` P ) ) |
6 |
5
|
dmeqd |
|- ( V e. W -> dom ( iEdg ` <. V , ( _I |` P ) >. ) = dom ( _I |` P ) ) |
7 |
|
opvtxfv |
|- ( ( V e. W /\ ( _I |` P ) e. _V ) -> ( Vtx ` <. V , ( _I |` P ) >. ) = V ) |
8 |
3 7
|
mpdan |
|- ( V e. W -> ( Vtx ` <. V , ( _I |` P ) >. ) = V ) |
9 |
8
|
pweqd |
|- ( V e. W -> ~P ( Vtx ` <. V , ( _I |` P ) >. ) = ~P V ) |
10 |
9
|
rabeqdv |
|- ( V e. W -> { x e. ~P ( Vtx ` <. V , ( _I |` P ) >. ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
11 |
5 6 10
|
f1eq123d |
|- ( V e. W -> ( ( iEdg ` <. V , ( _I |` P ) >. ) : dom ( iEdg ` <. V , ( _I |` P ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` P ) >. ) | ( # ` x ) = 2 } <-> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
12 |
2 11
|
mpbird |
|- ( V e. W -> ( iEdg ` <. V , ( _I |` P ) >. ) : dom ( iEdg ` <. V , ( _I |` P ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` P ) >. ) | ( # ` x ) = 2 } ) |
13 |
|
opex |
|- <. V , ( _I |` P ) >. e. _V |
14 |
|
eqid |
|- ( Vtx ` <. V , ( _I |` P ) >. ) = ( Vtx ` <. V , ( _I |` P ) >. ) |
15 |
|
eqid |
|- ( iEdg ` <. V , ( _I |` P ) >. ) = ( iEdg ` <. V , ( _I |` P ) >. ) |
16 |
14 15
|
isusgrs |
|- ( <. V , ( _I |` P ) >. e. _V -> ( <. V , ( _I |` P ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` P ) >. ) : dom ( iEdg ` <. V , ( _I |` P ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` P ) >. ) | ( # ` x ) = 2 } ) ) |
17 |
13 16
|
mp1i |
|- ( V e. W -> ( <. V , ( _I |` P ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` P ) >. ) : dom ( iEdg ` <. V , ( _I |` P ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` P ) >. ) | ( # ` x ) = 2 } ) ) |
18 |
12 17
|
mpbird |
|- ( V e. W -> <. V , ( _I |` P ) >. e. USGraph ) |