Metamath Proof Explorer


Theorem usgrexmplvtx

Description: The vertices 0 , 1 , 2 , 3 , 4 of the graph G = <. V , E >. . (Contributed by AV, 12-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v
|- V = ( 0 ... 4 )
usgrexmpl.e
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ">
usgrexmpl.g
|- G = <. V , E >.
Assertion usgrexmplvtx
|- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } )

Proof

Step Hyp Ref Expression
1 usgrexmpl.v
 |-  V = ( 0 ... 4 )
2 usgrexmpl.e
 |-  E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ">
3 usgrexmpl.g
 |-  G = <. V , E >.
4 1 2 3 usgrexmpllem
 |-  ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E )
5 id
 |-  ( ( Vtx ` G ) = V -> ( Vtx ` G ) = V )
6 fz0to4untppr
 |-  ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } )
7 1 6 eqtri
 |-  V = ( { 0 , 1 , 2 } u. { 3 , 4 } )
8 5 7 eqtrdi
 |-  ( ( Vtx ` G ) = V -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) )
9 8 adantr
 |-  ( ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) )
10 4 9 ax-mp
 |-  ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } )