Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl.v |
|- V = ( 0 ... 4 ) |
2 |
|
usgrexmpl.e |
|- E = <" { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } "> |
3 |
|
usgrexmpl.g |
|- G = <. V , E >. |
4 |
1 2 3
|
usgrexmpllem |
|- ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) |
5 |
|
id |
|- ( ( Vtx ` G ) = V -> ( Vtx ` G ) = V ) |
6 |
|
fz0to4untppr |
|- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
7 |
1 6
|
eqtri |
|- V = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
8 |
5 7
|
eqtrdi |
|- ( ( Vtx ` G ) = V -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
9 |
8
|
adantr |
|- ( ( ( Vtx ` G ) = V /\ ( iEdg ` G ) = E ) -> ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
10 |
4 9
|
ax-mp |
|- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |