Description: The edge function of a simple graph is a bijective function onto its range. (Contributed by Alexander van der Vekens, 18-Nov-2017) (Revised by AV, 15-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | usgrf1o.e | |- E = ( iEdg ` G ) |
|
Assertion | usgrf1o | |- ( G e. USGraph -> E : dom E -1-1-onto-> ran E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrf1o.e | |- E = ( iEdg ` G ) |
|
2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
3 | 2 1 | usgrfs | |- ( G e. USGraph -> E : dom E -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
4 | f1f1orn | |- ( E : dom E -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> E : dom E -1-1-onto-> ran E ) |
|
5 | 3 4 | syl | |- ( G e. USGraph -> E : dom E -1-1-onto-> ran E ) |