Metamath Proof Explorer


Theorem usgrf1o

Description: The edge function of a simple graph is a bijective function onto its range. (Contributed by Alexander van der Vekens, 18-Nov-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Hypothesis usgrf1o.e
|- E = ( iEdg ` G )
Assertion usgrf1o
|- ( G e. USGraph -> E : dom E -1-1-onto-> ran E )

Proof

Step Hyp Ref Expression
1 usgrf1o.e
 |-  E = ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 2 1 usgrfs
 |-  ( G e. USGraph -> E : dom E -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
4 f1f1orn
 |-  ( E : dom E -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> E : dom E -1-1-onto-> ran E )
5 3 4 syl
 |-  ( G e. USGraph -> E : dom E -1-1-onto-> ran E )