Metamath Proof Explorer


Theorem usgrnloop

Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e
|- E = ( iEdg ` G )
Assertion usgrnloop
|- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) )

Proof

Step Hyp Ref Expression
1 usgrnloopv.e
 |-  E = ( iEdg ` G )
2 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
3 1 umgrnloop
 |-  ( G e. UMGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) )
4 2 3 syl
 |-  ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { M , N } -> M =/= N ) )