Metamath Proof Explorer


Theorem usgrnloop0

Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e
|- E = ( iEdg ` G )
Assertion usgrnloop0
|- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) )

Proof

Step Hyp Ref Expression
1 usgrnloopv.e
 |-  E = ( iEdg ` G )
2 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
3 1 umgrnloop0
 |-  ( G e. UMGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) )
4 2 3 syl
 |-  ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) )