Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
Assertion | usgrnloop0 | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
2 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
3 | 1 | umgrnloop0 | |- ( G e. UMGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |
4 | 2 3 | syl | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |