Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrres.e |
|- E = ( iEdg ` G ) |
3 |
|
upgrres.f |
|- F = { i e. dom E | N e/ ( E ` i ) } |
4 |
|
upgrres.s |
|- S = <. ( V \ { N } ) , ( E |` F ) >. |
5 |
1 2
|
usgrf |
|- ( G e. USGraph -> E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
6 |
3
|
ssrab3 |
|- F C_ dom E |
7 |
6
|
a1i |
|- ( ( G e. USGraph /\ N e. V ) -> F C_ dom E ) |
8 |
|
f1ssres |
|- ( ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ F C_ dom E ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
9 |
5 7 8
|
syl2an2r |
|- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
10 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
11 |
1 2 3
|
umgrreslem |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
12 |
10 11
|
sylan |
|- ( ( G e. USGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
13 |
|
f1ssr |
|- ( ( ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
14 |
9 12 13
|
syl2anc |
|- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
15 |
|
ssdmres |
|- ( F C_ dom E <-> dom ( E |` F ) = F ) |
16 |
6 15
|
mpbi |
|- dom ( E |` F ) = F |
17 |
|
f1eq2 |
|- ( dom ( E |` F ) = F -> ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
18 |
16 17
|
ax-mp |
|- ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
19 |
14 18
|
sylibr |
|- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
20 |
|
opex |
|- <. ( V \ { N } ) , ( E |` F ) >. e. _V |
21 |
4 20
|
eqeltri |
|- S e. _V |
22 |
1 2 3 4
|
uhgrspan1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
23 |
22
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
24 |
1 2 3 4
|
uhgrspan1lem3 |
|- ( iEdg ` S ) = ( E |` F ) |
25 |
24
|
eqcomi |
|- ( E |` F ) = ( iEdg ` S ) |
26 |
23 25
|
isusgrs |
|- ( S e. _V -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
27 |
21 26
|
mp1i |
|- ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
28 |
19 27
|
mpbird |
|- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |