| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrres1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
upgrres1.e |
|- E = ( Edg ` G ) |
| 3 |
|
upgrres1.f |
|- F = { e e. E | N e/ e } |
| 4 |
|
upgrres1.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
| 5 |
|
f1oi |
|- ( _I |` F ) : F -1-1-onto-> F |
| 6 |
|
f1of1 |
|- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F -1-1-> F ) |
| 7 |
5 6
|
mp1i |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : F -1-1-> F ) |
| 8 |
|
eqidd |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) = ( _I |` F ) ) |
| 9 |
|
dmresi |
|- dom ( _I |` F ) = F |
| 10 |
9
|
a1i |
|- ( ( G e. USGraph /\ N e. V ) -> dom ( _I |` F ) = F ) |
| 11 |
|
eqidd |
|- ( ( G e. USGraph /\ N e. V ) -> F = F ) |
| 12 |
8 10 11
|
f1eq123d |
|- ( ( G e. USGraph /\ N e. V ) -> ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F <-> ( _I |` F ) : F -1-1-> F ) ) |
| 13 |
7 12
|
mpbird |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> F ) |
| 14 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
| 15 |
1 2 3
|
umgrres1lem |
|- ( ( G e. UMGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 16 |
14 15
|
sylan |
|- ( ( G e. USGraph /\ N e. V ) -> ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 17 |
|
f1ssr |
|- ( ( ( _I |` F ) : dom ( _I |` F ) -1-1-> F /\ ran ( _I |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 18 |
13 16 17
|
syl2anc |
|- ( ( G e. USGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 19 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
| 20 |
4 19
|
eqeltri |
|- S e. _V |
| 21 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
| 22 |
21
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
| 23 |
1 2 3 4
|
upgrres1lem3 |
|- ( iEdg ` S ) = ( _I |` F ) |
| 24 |
23
|
eqcomi |
|- ( _I |` F ) = ( iEdg ` S ) |
| 25 |
22 24
|
isusgrs |
|- ( S e. _V -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 26 |
20 25
|
mp1i |
|- ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( _I |` F ) : dom ( _I |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 27 |
18 26
|
mpbird |
|- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |