Description: A spanning subgraph S of a simple graph G is a simple graph. (Contributed by AV, 15-Oct-2020) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan.v | |- V = ( Vtx ` G ) |
|
| uhgrspan.e | |- E = ( iEdg ` G ) |
||
| uhgrspan.s | |- ( ph -> S e. W ) |
||
| uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
||
| uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
||
| usgrspan.g | |- ( ph -> G e. USGraph ) |
||
| Assertion | usgrspan | |- ( ph -> S e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrspan.e | |- E = ( iEdg ` G ) |
|
| 3 | uhgrspan.s | |- ( ph -> S e. W ) |
|
| 4 | uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 5 | uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
|
| 6 | usgrspan.g | |- ( ph -> G e. USGraph ) |
|
| 7 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 8 | 6 7 | syl | |- ( ph -> G e. UHGraph ) |
| 9 | 1 2 3 4 5 8 | uhgrspansubgr | |- ( ph -> S SubGraph G ) |
| 10 | subusgr | |- ( ( G e. USGraph /\ S SubGraph G ) -> S e. USGraph ) |
|
| 11 | 6 9 10 | syl2anc | |- ( ph -> S e. USGraph ) |