Metamath Proof Explorer


Theorem usgrss

Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Hypotheses usgrf1o.e
|- E = ( iEdg ` G )
usgrss.v
|- V = ( Vtx ` G )
Assertion usgrss
|- ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V )

Proof

Step Hyp Ref Expression
1 usgrf1o.e
 |-  E = ( iEdg ` G )
2 usgrss.v
 |-  V = ( Vtx ` G )
3 ssrab2
 |-  { x e. ~P V | ( # ` x ) = 2 } C_ ~P V
4 2 1 usgrfs
 |-  ( G e. USGraph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } )
5 f1f
 |-  ( E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )
6 4 5 syl
 |-  ( G e. USGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )
7 6 ffvelrnda
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } )
8 3 7 sselid
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ~P V )
9 8 elpwid
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V )