| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgrf1o.e |  |-  E = ( iEdg ` G ) | 
						
							| 2 |  | usgrss.v |  |-  V = ( Vtx ` G ) | 
						
							| 3 |  | ssrab2 |  |-  { x e. ~P V | ( # ` x ) = 2 } C_ ~P V | 
						
							| 4 | 2 1 | usgrfs |  |-  ( G e. USGraph -> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 5 |  | f1f |  |-  ( E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 6 | 4 5 | syl |  |-  ( G e. USGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 7 | 6 | ffvelcdmda |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 8 | 3 7 | sselid |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. ~P V ) | 
						
							| 9 | 8 | elpwid |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |