Metamath Proof Explorer


Theorem usgrsscusgr

Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 13-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v
|- V = ( Vtx ` G )
fusgrmaxsize.e
|- E = ( Edg ` G )
usgrsscusgra.h
|- V = ( Vtx ` H )
usgrsscusgra.f
|- F = ( Edg ` H )
Assertion usgrsscusgr
|- ( ( G e. USGraph /\ H e. ComplUSGraph ) -> A. e e. E E. f e. F e = f )

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v
 |-  V = ( Vtx ` G )
2 fusgrmaxsize.e
 |-  E = ( Edg ` G )
3 usgrsscusgra.h
 |-  V = ( Vtx ` H )
4 usgrsscusgra.f
 |-  F = ( Edg ` H )
5 1 2 3 4 usgredgsscusgredg
 |-  ( ( G e. USGraph /\ H e. ComplUSGraph ) -> E C_ F )
6 dfss5
 |-  ( E C_ F <-> A. e e. E E. f e. F e = f )
7 5 6 sylib
 |-  ( ( G e. USGraph /\ H e. ComplUSGraph ) -> A. e e. E E. f e. F e = f )