Step |
Hyp |
Ref |
Expression |
1 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
2 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
3 |
1 2
|
jca |
|- ( G e. USGraph -> ( G e. UMGraph /\ G e. USPGraph ) ) |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
6 |
4 5
|
uspgrf |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
7 |
|
umgredgss |
|- ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
8 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
9 |
|
prprrab |
|- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } |
10 |
9
|
eqcomi |
|- { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } = { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } |
11 |
7 8 10
|
3sstr3g |
|- ( G e. UMGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
12 |
|
f1ssr |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
13 |
6 11 12
|
syl2anr |
|- ( ( G e. UMGraph /\ G e. USPGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
14 |
4 5
|
isusgr |
|- ( G e. UMGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
15 |
14
|
adantr |
|- ( ( G e. UMGraph /\ G e. USPGraph ) -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
16 |
13 15
|
mpbird |
|- ( ( G e. UMGraph /\ G e. USPGraph ) -> G e. USGraph ) |
17 |
3 16
|
impbii |
|- ( G e. USGraph <-> ( G e. UMGraph /\ G e. USPGraph ) ) |