Metamath Proof Explorer


Theorem usgrun

Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g
|- ( ph -> G e. USGraph )
usgrun.h
|- ( ph -> H e. USGraph )
usgrun.e
|- E = ( iEdg ` G )
usgrun.f
|- F = ( iEdg ` H )
usgrun.vg
|- V = ( Vtx ` G )
usgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
usgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
usgrun.u
|- ( ph -> U e. W )
usgrun.v
|- ( ph -> ( Vtx ` U ) = V )
usgrun.un
|- ( ph -> ( iEdg ` U ) = ( E u. F ) )
Assertion usgrun
|- ( ph -> U e. UMGraph )

Proof

Step Hyp Ref Expression
1 usgrun.g
 |-  ( ph -> G e. USGraph )
2 usgrun.h
 |-  ( ph -> H e. USGraph )
3 usgrun.e
 |-  E = ( iEdg ` G )
4 usgrun.f
 |-  F = ( iEdg ` H )
5 usgrun.vg
 |-  V = ( Vtx ` G )
6 usgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 usgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 usgrun.u
 |-  ( ph -> U e. W )
9 usgrun.v
 |-  ( ph -> ( Vtx ` U ) = V )
10 usgrun.un
 |-  ( ph -> ( iEdg ` U ) = ( E u. F ) )
11 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
12 1 11 syl
 |-  ( ph -> G e. UMGraph )
13 usgrumgr
 |-  ( H e. USGraph -> H e. UMGraph )
14 2 13 syl
 |-  ( ph -> H e. UMGraph )
15 12 14 3 4 5 6 7 8 9 10 umgrun
 |-  ( ph -> U e. UMGraph )