Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | usgrun.g | |- ( ph -> G e. USGraph ) |
|
usgrun.h | |- ( ph -> H e. USGraph ) |
||
usgrun.e | |- E = ( iEdg ` G ) |
||
usgrun.f | |- F = ( iEdg ` H ) |
||
usgrun.vg | |- V = ( Vtx ` G ) |
||
usgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
usgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
||
usgrun.u | |- ( ph -> U e. W ) |
||
usgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
||
usgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
||
Assertion | usgrun | |- ( ph -> U e. UMGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrun.g | |- ( ph -> G e. USGraph ) |
|
2 | usgrun.h | |- ( ph -> H e. USGraph ) |
|
3 | usgrun.e | |- E = ( iEdg ` G ) |
|
4 | usgrun.f | |- F = ( iEdg ` H ) |
|
5 | usgrun.vg | |- V = ( Vtx ` G ) |
|
6 | usgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
7 | usgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
|
8 | usgrun.u | |- ( ph -> U e. W ) |
|
9 | usgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
|
10 | usgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
|
11 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
12 | 1 11 | syl | |- ( ph -> G e. UMGraph ) |
13 | usgrumgr | |- ( H e. USGraph -> H e. UMGraph ) |
|
14 | 2 13 | syl | |- ( ph -> H e. UMGraph ) |
15 | 12 14 3 4 5 6 7 8 9 10 | umgrun | |- ( ph -> U e. UMGraph ) |