Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
isusgr |
|- ( G e. USGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
4 |
|
2re |
|- 2 e. RR |
5 |
4
|
eqlei2 |
|- ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) |
6 |
5
|
a1i |
|- ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) ) |
7 |
6
|
ss2rabi |
|- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } |
8 |
|
f1ss |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } /\ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
9 |
7 8
|
mpan2 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
10 |
3 9
|
syl6bi |
|- ( G e. USGraph -> ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
11 |
1 2
|
isuspgr |
|- ( G e. USGraph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
12 |
10 11
|
sylibrd |
|- ( G e. USGraph -> ( G e. USGraph -> G e. USPGraph ) ) |
13 |
12
|
pm2.43i |
|- ( G e. USGraph -> G e. USPGraph ) |