| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 2 |  | edgusgr |  |-  ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ ( # ` e ) = 2 ) ) | 
						
							| 3 | 2 | simprd |  |-  ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( # ` e ) = 2 ) | 
						
							| 4 | 3 | ralrimiva |  |-  ( G e. USGraph -> A. e e. ( Edg ` G ) ( # ` e ) = 2 ) | 
						
							| 5 | 1 4 | jca |  |-  ( G e. USGraph -> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) | 
						
							| 6 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 7 | 6 | a1i |  |-  ( G e. USPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 8 | 7 | raleqdv |  |-  ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 <-> A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) ) | 
						
							| 9 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 10 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 11 | 9 10 | uspgrf |  |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 12 |  | f1f |  |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 13 | 12 | frnd |  |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 14 |  | ssel2 |  |-  ( ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ y e. ran ( iEdg ` G ) ) -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 15 | 14 | expcom |  |-  ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 16 |  | fveqeq2 |  |-  ( e = y -> ( ( # ` e ) = 2 <-> ( # ` y ) = 2 ) ) | 
						
							| 17 | 16 | rspcv |  |-  ( y e. ran ( iEdg ` G ) -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( # ` y ) = 2 ) ) | 
						
							| 18 |  | fveq2 |  |-  ( x = y -> ( # ` x ) = ( # ` y ) ) | 
						
							| 19 | 18 | breq1d |  |-  ( x = y -> ( ( # ` x ) <_ 2 <-> ( # ` y ) <_ 2 ) ) | 
						
							| 20 | 19 | elrab |  |-  ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) ) | 
						
							| 21 |  | eldifi |  |-  ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> y e. ~P ( Vtx ` G ) ) | 
						
							| 22 | 21 | anim1i |  |-  ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) | 
						
							| 23 |  | fveqeq2 |  |-  ( x = y -> ( ( # ` x ) = 2 <-> ( # ` y ) = 2 ) ) | 
						
							| 24 | 23 | elrab |  |-  ( y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) | 
						
							| 25 | 22 24 | sylibr |  |-  ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 26 | 25 | ex |  |-  ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 28 | 20 27 | sylbi |  |-  ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 29 | 17 28 | syl9 |  |-  ( y e. ran ( iEdg ` G ) -> ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) | 
						
							| 30 | 15 29 | syld |  |-  ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) | 
						
							| 31 | 30 | com13 |  |-  ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 33 | 32 | ssrdv |  |-  ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 34 | 33 | ex |  |-  ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 35 | 13 34 | mpan9 |  |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 36 |  | f1ssr |  |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 37 | 35 36 | syldan |  |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 38 | 37 | ex |  |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 39 | 11 38 | syl |  |-  ( G e. USPGraph -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 40 | 8 39 | sylbid |  |-  ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) | 
						
							| 42 | 9 10 | isusgrs |  |-  ( G e. USPGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) | 
						
							| 44 | 41 43 | mpbird |  |-  ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> G e. USGraph ) | 
						
							| 45 | 5 44 | impbii |  |-  ( G e. USGraph <-> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |