| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ushgredgedg.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | ushgredgedg.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | ushgredgedg.v |  |-  V = ( Vtx ` G ) | 
						
							| 4 |  | ushgredgedg.a |  |-  A = { i e. dom I | N e. ( I ` i ) } | 
						
							| 5 |  | ushgredgedg.b |  |-  B = { e e. E | N e. e } | 
						
							| 6 |  | ushgredgedg.f |  |-  F = ( x e. A |-> ( I ` x ) ) | 
						
							| 7 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 8 | 7 2 | ushgrf |  |-  ( G e. USHGraph -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( G e. USHGraph /\ N e. V ) -> I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 10 |  | ssrab2 |  |-  { i e. dom I | N e. ( I ` i ) } C_ dom I | 
						
							| 11 |  | f1ores |  |-  ( ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) /\ { i e. dom I | N e. ( I ` i ) } C_ dom I ) -> ( I |` { i e. dom I | N e. ( I ` i ) } ) : { i e. dom I | N e. ( I ` i ) } -1-1-onto-> ( I " { i e. dom I | N e. ( I ` i ) } ) ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | N e. ( I ` i ) } ) : { i e. dom I | N e. ( I ` i ) } -1-1-onto-> ( I " { i e. dom I | N e. ( I ` i ) } ) ) | 
						
							| 13 | 4 | a1i |  |-  ( ( G e. USHGraph /\ N e. V ) -> A = { i e. dom I | N e. ( I ` i ) } ) | 
						
							| 14 |  | eqidd |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ x e. A ) -> ( I ` x ) = ( I ` x ) ) | 
						
							| 15 | 13 14 | mpteq12dva |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( x e. A |-> ( I ` x ) ) = ( x e. { i e. dom I | N e. ( I ` i ) } |-> ( I ` x ) ) ) | 
						
							| 16 | 6 15 | eqtrid |  |-  ( ( G e. USHGraph /\ N e. V ) -> F = ( x e. { i e. dom I | N e. ( I ` i ) } |-> ( I ` x ) ) ) | 
						
							| 17 |  | f1f |  |-  ( I : dom I -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 18 | 8 17 | syl |  |-  ( G e. USHGraph -> I : dom I --> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 19 | 10 | a1i |  |-  ( G e. USHGraph -> { i e. dom I | N e. ( I ` i ) } C_ dom I ) | 
						
							| 20 | 18 19 | feqresmpt |  |-  ( G e. USHGraph -> ( I |` { i e. dom I | N e. ( I ` i ) } ) = ( x e. { i e. dom I | N e. ( I ` i ) } |-> ( I ` x ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( I |` { i e. dom I | N e. ( I ` i ) } ) = ( x e. { i e. dom I | N e. ( I ` i ) } |-> ( I ` x ) ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( x e. { i e. dom I | N e. ( I ` i ) } |-> ( I ` x ) ) = ( I |` { i e. dom I | N e. ( I ` i ) } ) ) | 
						
							| 23 | 16 22 | eqtrd |  |-  ( ( G e. USHGraph /\ N e. V ) -> F = ( I |` { i e. dom I | N e. ( I ` i ) } ) ) | 
						
							| 24 |  | ushgruhgr |  |-  ( G e. USHGraph -> G e. UHGraph ) | 
						
							| 25 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 26 | 25 | uhgrfun |  |-  ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 27 | 24 26 | syl |  |-  ( G e. USHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 28 | 2 | funeqi |  |-  ( Fun I <-> Fun ( iEdg ` G ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( G e. USHGraph -> Fun I ) | 
						
							| 30 | 29 | adantr |  |-  ( ( G e. USHGraph /\ N e. V ) -> Fun I ) | 
						
							| 31 |  | dfimafn |  |-  ( ( Fun I /\ { i e. dom I | N e. ( I ` i ) } C_ dom I ) -> ( I " { i e. dom I | N e. ( I ` i ) } ) = { e | E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e } ) | 
						
							| 32 | 30 10 31 | sylancl |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( I " { i e. dom I | N e. ( I ` i ) } ) = { e | E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e } ) | 
						
							| 33 |  | fveq2 |  |-  ( i = j -> ( I ` i ) = ( I ` j ) ) | 
						
							| 34 | 33 | eleq2d |  |-  ( i = j -> ( N e. ( I ` i ) <-> N e. ( I ` j ) ) ) | 
						
							| 35 | 34 | elrab |  |-  ( j e. { i e. dom I | N e. ( I ` i ) } <-> ( j e. dom I /\ N e. ( I ` j ) ) ) | 
						
							| 36 |  | simpl |  |-  ( ( j e. dom I /\ N e. ( I ` j ) ) -> j e. dom I ) | 
						
							| 37 |  | fvelrn |  |-  ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran I ) | 
						
							| 38 | 2 | eqcomi |  |-  ( iEdg ` G ) = I | 
						
							| 39 | 38 | rneqi |  |-  ran ( iEdg ` G ) = ran I | 
						
							| 40 | 39 | eleq2i |  |-  ( ( I ` j ) e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran I ) | 
						
							| 41 | 37 40 | sylibr |  |-  ( ( Fun I /\ j e. dom I ) -> ( I ` j ) e. ran ( iEdg ` G ) ) | 
						
							| 42 | 30 36 41 | syl2an |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) ) -> ( I ` j ) e. ran ( iEdg ` G ) ) | 
						
							| 43 | 42 | 3adant3 |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> ( I ` j ) e. ran ( iEdg ` G ) ) | 
						
							| 44 |  | eleq1 |  |-  ( f = ( I ` j ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) | 
						
							| 45 | 44 | eqcoms |  |-  ( ( I ` j ) = f -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) | 
						
							| 46 | 45 | 3ad2ant3 |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> ( f e. ran ( iEdg ` G ) <-> ( I ` j ) e. ran ( iEdg ` G ) ) ) | 
						
							| 47 | 43 46 | mpbird |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> f e. ran ( iEdg ` G ) ) | 
						
							| 48 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 49 | 48 | a1i |  |-  ( G e. USHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 50 | 1 49 | eqtrid |  |-  ( G e. USHGraph -> E = ran ( iEdg ` G ) ) | 
						
							| 51 | 50 | eleq2d |  |-  ( G e. USHGraph -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) | 
						
							| 53 | 52 | 3ad2ant1 |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> ( f e. E <-> f e. ran ( iEdg ` G ) ) ) | 
						
							| 54 | 47 53 | mpbird |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> f e. E ) | 
						
							| 55 |  | eleq2 |  |-  ( ( I ` j ) = f -> ( N e. ( I ` j ) <-> N e. f ) ) | 
						
							| 56 | 55 | biimpcd |  |-  ( N e. ( I ` j ) -> ( ( I ` j ) = f -> N e. f ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( j e. dom I /\ N e. ( I ` j ) ) -> ( ( I ` j ) = f -> N e. f ) ) | 
						
							| 58 | 57 | a1i |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e. ( I ` j ) ) -> ( ( I ` j ) = f -> N e. f ) ) ) | 
						
							| 59 | 58 | 3imp |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> N e. f ) | 
						
							| 60 | 54 59 | jca |  |-  ( ( ( G e. USHGraph /\ N e. V ) /\ ( j e. dom I /\ N e. ( I ` j ) ) /\ ( I ` j ) = f ) -> ( f e. E /\ N e. f ) ) | 
						
							| 61 | 60 | 3exp |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e. ( I ` j ) ) -> ( ( I ` j ) = f -> ( f e. E /\ N e. f ) ) ) ) | 
						
							| 62 | 35 61 | biimtrid |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( j e. { i e. dom I | N e. ( I ` i ) } -> ( ( I ` j ) = f -> ( f e. E /\ N e. f ) ) ) ) | 
						
							| 63 | 62 | rexlimdv |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f -> ( f e. E /\ N e. f ) ) ) | 
						
							| 64 | 27 | funfnd |  |-  ( G e. USHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 65 |  | fvelrnb |  |-  ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f ) ) | 
						
							| 67 | 38 | dmeqi |  |-  dom ( iEdg ` G ) = dom I | 
						
							| 68 | 67 | eleq2i |  |-  ( j e. dom ( iEdg ` G ) <-> j e. dom I ) | 
						
							| 69 | 68 | biimpi |  |-  ( j e. dom ( iEdg ` G ) -> j e. dom I ) | 
						
							| 70 | 69 | adantr |  |-  ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> j e. dom I ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. dom I ) | 
						
							| 72 | 38 | fveq1i |  |-  ( ( iEdg ` G ) ` j ) = ( I ` j ) | 
						
							| 73 | 72 | eqeq2i |  |-  ( f = ( ( iEdg ` G ) ` j ) <-> f = ( I ` j ) ) | 
						
							| 74 | 73 | biimpi |  |-  ( f = ( ( iEdg ` G ) ` j ) -> f = ( I ` j ) ) | 
						
							| 75 | 74 | eqcoms |  |-  ( ( ( iEdg ` G ) ` j ) = f -> f = ( I ` j ) ) | 
						
							| 76 | 75 | eleq2d |  |-  ( ( ( iEdg ` G ) ` j ) = f -> ( N e. f <-> N e. ( I ` j ) ) ) | 
						
							| 77 | 76 | biimpcd |  |-  ( N e. f -> ( ( ( iEdg ` G ) ` j ) = f -> N e. ( I ` j ) ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( G e. USHGraph /\ N e. f ) -> ( ( ( iEdg ` G ) ` j ) = f -> N e. ( I ` j ) ) ) | 
						
							| 79 | 78 | adantld |  |-  ( ( G e. USHGraph /\ N e. f ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> N e. ( I ` j ) ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> N e. ( I ` j ) ) | 
						
							| 81 | 71 80 | jca |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. dom I /\ N e. ( I ` j ) ) ) | 
						
							| 82 | 81 35 | sylibr |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> j e. { i e. dom I | N e. ( I ` i ) } ) | 
						
							| 83 | 72 | eqeq1i |  |-  ( ( ( iEdg ` G ) ` j ) = f <-> ( I ` j ) = f ) | 
						
							| 84 | 83 | biimpi |  |-  ( ( ( iEdg ` G ) ` j ) = f -> ( I ` j ) = f ) | 
						
							| 85 | 84 | adantl |  |-  ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( I ` j ) = f ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( I ` j ) = f ) | 
						
							| 87 | 82 86 | jca |  |-  ( ( ( G e. USHGraph /\ N e. f ) /\ ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) ) -> ( j e. { i e. dom I | N e. ( I ` i ) } /\ ( I ` j ) = f ) ) | 
						
							| 88 | 87 | ex |  |-  ( ( G e. USHGraph /\ N e. f ) -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = f ) -> ( j e. { i e. dom I | N e. ( I ` i ) } /\ ( I ` j ) = f ) ) ) | 
						
							| 89 | 88 | reximdv2 |  |-  ( ( G e. USHGraph /\ N e. f ) -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) | 
						
							| 90 | 89 | ex |  |-  ( G e. USHGraph -> ( N e. f -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) ) | 
						
							| 91 | 90 | com23 |  |-  ( G e. USHGraph -> ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = f -> ( N e. f -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) ) | 
						
							| 92 | 66 91 | sylbid |  |-  ( G e. USHGraph -> ( f e. ran ( iEdg ` G ) -> ( N e. f -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) ) | 
						
							| 93 | 51 92 | sylbid |  |-  ( G e. USHGraph -> ( f e. E -> ( N e. f -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) ) | 
						
							| 94 | 93 | impd |  |-  ( G e. USHGraph -> ( ( f e. E /\ N e. f ) -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( ( f e. E /\ N e. f ) -> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) | 
						
							| 96 | 63 95 | impbid |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f <-> ( f e. E /\ N e. f ) ) ) | 
						
							| 97 |  | vex |  |-  f e. _V | 
						
							| 98 |  | eqeq2 |  |-  ( e = f -> ( ( I ` j ) = e <-> ( I ` j ) = f ) ) | 
						
							| 99 | 98 | rexbidv |  |-  ( e = f -> ( E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e <-> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) ) | 
						
							| 100 | 97 99 | elab |  |-  ( f e. { e | E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e } <-> E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = f ) | 
						
							| 101 |  | eleq2 |  |-  ( e = f -> ( N e. e <-> N e. f ) ) | 
						
							| 102 | 101 5 | elrab2 |  |-  ( f e. B <-> ( f e. E /\ N e. f ) ) | 
						
							| 103 | 96 100 102 | 3bitr4g |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( f e. { e | E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e } <-> f e. B ) ) | 
						
							| 104 | 103 | eqrdv |  |-  ( ( G e. USHGraph /\ N e. V ) -> { e | E. j e. { i e. dom I | N e. ( I ` i ) } ( I ` j ) = e } = B ) | 
						
							| 105 | 32 104 | eqtrd |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( I " { i e. dom I | N e. ( I ` i ) } ) = B ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ( G e. USHGraph /\ N e. V ) -> B = ( I " { i e. dom I | N e. ( I ` i ) } ) ) | 
						
							| 107 | 23 13 106 | f1oeq123d |  |-  ( ( G e. USHGraph /\ N e. V ) -> ( F : A -1-1-onto-> B <-> ( I |` { i e. dom I | N e. ( I ` i ) } ) : { i e. dom I | N e. ( I ` i ) } -1-1-onto-> ( I " { i e. dom I | N e. ( I ` i ) } ) ) ) | 
						
							| 108 | 12 107 | mpbird |  |-  ( ( G e. USHGraph /\ N e. V ) -> F : A -1-1-onto-> B ) |