Metamath Proof Explorer


Theorem ushgrf

Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v
|- V = ( Vtx ` G )
uhgrf.e
|- E = ( iEdg ` G )
Assertion ushgrf
|- ( G e. USHGraph -> E : dom E -1-1-> ( ~P V \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 uhgrf.v
 |-  V = ( Vtx ` G )
2 uhgrf.e
 |-  E = ( iEdg ` G )
3 1 2 isushgr
 |-  ( G e. USHGraph -> ( G e. USHGraph <-> E : dom E -1-1-> ( ~P V \ { (/) } ) ) )
4 3 ibi
 |-  ( G e. USHGraph -> E : dom E -1-1-> ( ~P V \ { (/) } ) )