Description: The union U of two (undirected) simple hypergraphs G and H with the same vertex set V is a (not necessarily simple) hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ushgrun.g | |- ( ph -> G e. USHGraph ) |
|
ushgrun.h | |- ( ph -> H e. USHGraph ) |
||
ushgrun.e | |- E = ( iEdg ` G ) |
||
ushgrun.f | |- F = ( iEdg ` H ) |
||
ushgrun.vg | |- V = ( Vtx ` G ) |
||
ushgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
ushgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
||
ushgrun.u | |- ( ph -> U e. W ) |
||
ushgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
||
ushgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
||
Assertion | ushgrun | |- ( ph -> U e. UHGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgrun.g | |- ( ph -> G e. USHGraph ) |
|
2 | ushgrun.h | |- ( ph -> H e. USHGraph ) |
|
3 | ushgrun.e | |- E = ( iEdg ` G ) |
|
4 | ushgrun.f | |- F = ( iEdg ` H ) |
|
5 | ushgrun.vg | |- V = ( Vtx ` G ) |
|
6 | ushgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
7 | ushgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
|
8 | ushgrun.u | |- ( ph -> U e. W ) |
|
9 | ushgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
|
10 | ushgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
|
11 | ushgruhgr | |- ( G e. USHGraph -> G e. UHGraph ) |
|
12 | 1 11 | syl | |- ( ph -> G e. UHGraph ) |
13 | ushgruhgr | |- ( H e. USHGraph -> H e. UHGraph ) |
|
14 | 2 13 | syl | |- ( ph -> H e. UHGraph ) |
15 | 12 14 3 4 5 6 7 8 9 10 | uhgrun | |- ( ph -> U e. UHGraph ) |