Metamath Proof Explorer


Theorem ushgrunop

Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If <. V , E >. and <. V , F >. are simple hypergraphs, then <. V , E u. F >. is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g
|- ( ph -> G e. USHGraph )
ushgrun.h
|- ( ph -> H e. USHGraph )
ushgrun.e
|- E = ( iEdg ` G )
ushgrun.f
|- F = ( iEdg ` H )
ushgrun.vg
|- V = ( Vtx ` G )
ushgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
ushgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
Assertion ushgrunop
|- ( ph -> <. V , ( E u. F ) >. e. UHGraph )

Proof

Step Hyp Ref Expression
1 ushgrun.g
 |-  ( ph -> G e. USHGraph )
2 ushgrun.h
 |-  ( ph -> H e. USHGraph )
3 ushgrun.e
 |-  E = ( iEdg ` G )
4 ushgrun.f
 |-  F = ( iEdg ` H )
5 ushgrun.vg
 |-  V = ( Vtx ` G )
6 ushgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 ushgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 ushgruhgr
 |-  ( G e. USHGraph -> G e. UHGraph )
9 1 8 syl
 |-  ( ph -> G e. UHGraph )
10 ushgruhgr
 |-  ( H e. USHGraph -> H e. UHGraph )
11 2 10 syl
 |-  ( ph -> H e. UHGraph )
12 9 11 3 4 5 6 7 uhgrunop
 |-  ( ph -> <. V , ( E u. F ) >. e. UHGraph )