| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uspgr1e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uspgr1e.a |  |-  ( ph -> A e. X ) | 
						
							| 3 |  | uspgr1e.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | uspgr1e.c |  |-  ( ph -> C e. V ) | 
						
							| 5 |  | uspgr1e.e |  |-  ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) | 
						
							| 6 |  | prex |  |-  { B , C } e. _V | 
						
							| 7 | 6 | snid |  |-  { B , C } e. { { B , C } } | 
						
							| 8 |  | f1sng |  |-  ( ( A e. X /\ { B , C } e. { { B , C } } ) -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) | 
						
							| 9 | 2 7 8 | sylancl |  |-  ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) | 
						
							| 10 | 3 4 | prssd |  |-  ( ph -> { B , C } C_ V ) | 
						
							| 11 | 10 1 | sseqtrdi |  |-  ( ph -> { B , C } C_ ( Vtx ` G ) ) | 
						
							| 12 | 6 | elpw |  |-  ( { B , C } e. ~P ( Vtx ` G ) <-> { B , C } C_ ( Vtx ` G ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( ph -> { B , C } e. ~P ( Vtx ` G ) ) | 
						
							| 14 | 13 3 | upgr1elem |  |-  ( ph -> { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 15 |  | f1ss |  |-  ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 16 | 9 14 15 | syl2anc |  |-  ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 17 | 6 | a1i |  |-  ( ph -> { B , C } e. _V ) | 
						
							| 18 | 17 3 | upgr1elem |  |-  ( ph -> { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 19 |  | f1ss |  |-  ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 20 | 9 18 19 | syl2anc |  |-  ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 21 |  | f1dm |  |-  ( { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom { <. A , { B , C } >. } = { A } ) | 
						
							| 22 |  | f1eq2 |  |-  ( dom { <. A , { B , C } >. } = { A } -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( ph -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 24 | 16 23 | mpbird |  |-  ( ph -> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 25 | 5 | dmeqd |  |-  ( ph -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) | 
						
							| 26 |  | eqidd |  |-  ( ph -> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } = { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 27 | 5 25 26 | f1eq123d |  |-  ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 28 | 24 27 | mpbird |  |-  ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 29 | 1 | 1vgrex |  |-  ( B e. V -> G e. _V ) | 
						
							| 30 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 31 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 32 | 30 31 | isuspgr |  |-  ( G e. _V -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 33 | 3 29 32 | 3syl |  |-  ( ph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 34 | 28 33 | mpbird |  |-  ( ph -> G e. USPGraph ) |