Metamath Proof Explorer


Theorem uspgr2v1e2w

Description: A simple pseudograph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion uspgr2v1e2w
|- ( ( A e. X /\ B e. Y ) -> <. { A , B } , <" { A , B } "> >. e. USPGraph )

Proof

Step Hyp Ref Expression
1 prex
 |-  { A , B } e. _V
2 prid1g
 |-  ( A e. X -> A e. { A , B } )
3 prid2g
 |-  ( B e. Y -> B e. { A , B } )
4 uspgr1ewop
 |-  ( ( { A , B } e. _V /\ A e. { A , B } /\ B e. { A , B } ) -> <. { A , B } , <" { A , B } "> >. e. USPGraph )
5 1 2 3 4 mp3an3an
 |-  ( ( A e. X /\ B e. Y ) -> <. { A , B } , <" { A , B } "> >. e. USPGraph )