| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3anan32 |  |-  ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) ) | 
						
							| 3 |  | wlkeq |  |-  ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) | 
						
							| 4 | 3 | 3expa |  |-  ( ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) | 
						
							| 6 |  | fzofzp1 |  |-  ( x e. ( 0 ..^ N ) -> ( x + 1 ) e. ( 0 ... N ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) -> ( x + 1 ) e. ( 0 ... N ) ) | 
						
							| 8 |  | fveq2 |  |-  ( y = ( x + 1 ) -> ( ( 2nd ` A ) ` y ) = ( ( 2nd ` A ) ` ( x + 1 ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( y = ( x + 1 ) -> ( ( 2nd ` B ) ` y ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( y = ( x + 1 ) -> ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) /\ y = ( x + 1 ) ) -> ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) | 
						
							| 12 | 7 11 | rspcdv |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) | 
						
							| 13 | 12 | impancom |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> ( x e. ( 0 ..^ N ) -> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) | 
						
							| 14 | 13 | ralrimiv |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. x e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) | 
						
							| 15 |  | fvoveq1 |  |-  ( y = x -> ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` A ) ` ( x + 1 ) ) ) | 
						
							| 16 |  | fvoveq1 |  |-  ( y = x -> ( ( 2nd ` B ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) | 
						
							| 17 | 15 16 | eqeq12d |  |-  ( y = x -> ( ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) | 
						
							| 18 | 17 | cbvralvw |  |-  ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) <-> A. x e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) | 
						
							| 19 | 14 18 | sylibr |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) | 
						
							| 20 |  | fzossfz |  |-  ( 0 ..^ N ) C_ ( 0 ... N ) | 
						
							| 21 |  | ssralv |  |-  ( ( 0 ..^ N ) C_ ( 0 ... N ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) | 
						
							| 22 | 20 21 | mp1i |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) | 
						
							| 23 |  | r19.26 |  |-  ( A. y e. ( 0 ..^ N ) ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) <-> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) ) | 
						
							| 24 |  | preq12 |  |-  ( ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) | 
						
							| 25 | 24 | a1i |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 26 | 25 | ralimdv |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 27 | 23 26 | biimtrrid |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 28 | 27 | expd |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 29 | 22 28 | syld |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 31 | 19 30 | mpd |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) | 
						
							| 32 | 31 | ex |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 33 |  | uspgrupgr |  |-  ( G e. USPGraph -> G e. UPGraph ) | 
						
							| 34 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 35 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 36 |  | eqid |  |-  ( 1st ` A ) = ( 1st ` A ) | 
						
							| 37 |  | eqid |  |-  ( 2nd ` A ) = ( 2nd ` A ) | 
						
							| 38 | 34 35 36 37 | upgrwlkcompim |  |-  ( ( G e. UPGraph /\ A e. ( Walks ` G ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) | 
						
							| 39 | 38 | ex |  |-  ( G e. UPGraph -> ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 40 | 33 39 | syl |  |-  ( G e. USPGraph -> ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 41 |  | eqid |  |-  ( 1st ` B ) = ( 1st ` B ) | 
						
							| 42 |  | eqid |  |-  ( 2nd ` B ) = ( 2nd ` B ) | 
						
							| 43 | 34 35 41 42 | upgrwlkcompim |  |-  ( ( G e. UPGraph /\ B e. ( Walks ` G ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 44 | 43 | ex |  |-  ( G e. UPGraph -> ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 45 | 33 44 | syl |  |-  ( G e. USPGraph -> ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 46 |  | oveq2 |  |-  ( ( # ` ( 1st ` B ) ) = N -> ( 0 ..^ ( # ` ( 1st ` B ) ) ) = ( 0 ..^ N ) ) | 
						
							| 47 | 46 | eqcoms |  |-  ( N = ( # ` ( 1st ` B ) ) -> ( 0 ..^ ( # ` ( 1st ` B ) ) ) = ( 0 ..^ N ) ) | 
						
							| 48 | 47 | raleqdv |  |-  ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 49 |  | oveq2 |  |-  ( ( # ` ( 1st ` A ) ) = N -> ( 0 ..^ ( # ` ( 1st ` A ) ) ) = ( 0 ..^ N ) ) | 
						
							| 50 | 49 | eqcoms |  |-  ( N = ( # ` ( 1st ` A ) ) -> ( 0 ..^ ( # ` ( 1st ` A ) ) ) = ( 0 ..^ N ) ) | 
						
							| 51 | 50 | raleqdv |  |-  ( N = ( # ` ( 1st ` A ) ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } <-> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) | 
						
							| 52 | 48 51 | bi2anan9r |  |-  ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) <-> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) | 
						
							| 53 |  | r19.26 |  |-  ( A. y e. ( 0 ..^ N ) ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) <-> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) | 
						
							| 54 |  | eqeq2 |  |-  ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) | 
						
							| 55 |  | eqeq2 |  |-  ( { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 56 | 55 | eqcoms |  |-  ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 57 | 56 | biimpd |  |-  ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 58 | 54 57 | biimtrdi |  |-  ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) | 
						
							| 59 | 58 | com13 |  |-  ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) | 
						
							| 60 | 59 | imp |  |-  ( ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 61 | 60 | ral2imi |  |-  ( A. y e. ( 0 ..^ N ) ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 62 | 53 61 | sylbir |  |-  ( ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 63 | 52 62 | biimtrdi |  |-  ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) | 
						
							| 64 | 63 | com12 |  |-  ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) | 
						
							| 65 | 64 | ex |  |-  ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) | 
						
							| 66 | 65 | 3ad2ant3 |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) | 
						
							| 67 | 66 | com12 |  |-  ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) | 
						
							| 68 | 67 | 3ad2ant3 |  |-  ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) | 
						
							| 70 | 69 | expd |  |-  ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) | 
						
							| 71 | 70 | a1i |  |-  ( G e. USPGraph -> ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) ) | 
						
							| 72 | 40 45 71 | syl2and |  |-  ( G e. USPGraph -> ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) ) | 
						
							| 73 | 72 | 3imp1 |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) | 
						
							| 74 |  | eqcom |  |-  ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) <-> ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) ) | 
						
							| 75 | 35 | uspgrf1oedg |  |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) | 
						
							| 76 |  | f1of1 |  |-  ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) | 
						
							| 77 | 75 76 | syl |  |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) | 
						
							| 78 |  | eqidd |  |-  ( G e. USPGraph -> ( iEdg ` G ) = ( iEdg ` G ) ) | 
						
							| 79 |  | eqidd |  |-  ( G e. USPGraph -> dom ( iEdg ` G ) = dom ( iEdg ` G ) ) | 
						
							| 80 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 81 | 80 | eqcomi |  |-  ran ( iEdg ` G ) = ( Edg ` G ) | 
						
							| 82 | 81 | a1i |  |-  ( G e. USPGraph -> ran ( iEdg ` G ) = ( Edg ` G ) ) | 
						
							| 83 | 78 79 82 | f1eq123d |  |-  ( G e. USPGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) ) | 
						
							| 84 | 77 83 | mpbird |  |-  ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) | 
						
							| 85 | 84 | 3ad2ant1 |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) | 
						
							| 87 | 34 35 36 37 | wlkelwrd |  |-  ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) ) | 
						
							| 88 | 34 35 41 42 | wlkelwrd |  |-  ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) ) | 
						
							| 89 |  | oveq2 |  |-  ( N = ( # ` ( 1st ` A ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) | 
						
							| 90 | 89 | eleq2d |  |-  ( N = ( # ` ( 1st ` A ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) ) | 
						
							| 91 |  | wrdsymbcl |  |-  ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) | 
						
							| 92 | 91 | expcom |  |-  ( y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 93 | 90 92 | biimtrdi |  |-  ( N = ( # ` ( 1st ` A ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 95 | 94 | imp |  |-  ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 96 | 95 | com12 |  |-  ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 98 |  | oveq2 |  |-  ( N = ( # ` ( 1st ` B ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) | 
						
							| 99 | 98 | eleq2d |  |-  ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) ) | 
						
							| 100 |  | wrdsymbcl |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) | 
						
							| 101 | 100 | expcom |  |-  ( y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 102 | 99 101 | biimtrdi |  |-  ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 103 | 102 | adantl |  |-  ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 104 | 103 | imp |  |-  ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 105 | 104 | com12 |  |-  ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 107 | 97 106 | jcad |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 108 | 107 | ex |  |-  ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 110 | 109 | com12 |  |-  ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 112 | 111 | imp |  |-  ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 113 | 87 88 112 | syl2an |  |-  ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 114 | 113 | expd |  |-  ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 115 | 114 | expd |  |-  ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) ) | 
						
							| 116 | 115 | imp |  |-  ( ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 117 | 116 | 3adant1 |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) | 
						
							| 118 | 117 | imp |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) | 
						
							| 119 | 118 | imp |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) | 
						
							| 120 |  | f1veqaeq |  |-  ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) /\ ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 121 | 86 119 120 | syl2an2r |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 122 | 74 121 | biimtrid |  |-  ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 123 | 122 | ralimdva |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 124 | 32 73 123 | 3syld |  |-  ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 125 | 124 | expimpd |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) | 
						
							| 126 | 125 | pm4.71d |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) ) | 
						
							| 127 | 2 5 126 | 3bitr4d |  |-  ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |