Step |
Hyp |
Ref |
Expression |
1 |
|
uspgredgiedg.e |
|- E = ( Edg ` G ) |
2 |
|
uspgredgiedg.i |
|- I = ( iEdg ` G ) |
3 |
2
|
uspgrf1oedg |
|- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
4 |
|
f1oeq3 |
|- ( E = ( Edg ` G ) -> ( I : dom I -1-1-onto-> E <-> I : dom I -1-1-onto-> ( Edg ` G ) ) ) |
5 |
1 4
|
ax-mp |
|- ( I : dom I -1-1-onto-> E <-> I : dom I -1-1-onto-> ( Edg ` G ) ) |
6 |
3 5
|
sylibr |
|- ( G e. USPGraph -> I : dom I -1-1-onto-> E ) |
7 |
|
f1ofveu |
|- ( ( I : dom I -1-1-onto-> E /\ K e. E ) -> E! x e. dom I ( I ` x ) = K ) |
8 |
6 7
|
sylan |
|- ( ( G e. USPGraph /\ K e. E ) -> E! x e. dom I ( I ` x ) = K ) |
9 |
|
eqcom |
|- ( K = ( I ` x ) <-> ( I ` x ) = K ) |
10 |
9
|
reubii |
|- ( E! x e. dom I K = ( I ` x ) <-> E! x e. dom I ( I ` x ) = K ) |
11 |
8 10
|
sylibr |
|- ( ( G e. USPGraph /\ K e. E ) -> E! x e. dom I K = ( I ` x ) ) |