| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgrf1o.e |  |-  E = ( iEdg ` G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 1 | uspgrf |  |-  ( G e. USPGraph -> E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 4 |  | f1f1orn |  |-  ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ran E ) | 
						
							| 5 | 1 | rneqi |  |-  ran E = ran ( iEdg ` G ) | 
						
							| 6 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 7 | 5 6 | eqtr4i |  |-  ran E = ( Edg ` G ) | 
						
							| 8 |  | f1oeq3 |  |-  ( ran E = ( Edg ` G ) -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) | 
						
							| 10 | 4 9 | sylib |  |-  ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ( Edg ` G ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |