Metamath Proof Explorer


Theorem uspgriedgedg

Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025)

Ref Expression
Hypotheses uspgredgiedg.e
|- E = ( Edg ` G )
uspgredgiedg.i
|- I = ( iEdg ` G )
Assertion uspgriedgedg
|- ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E k = ( I ` X ) )

Proof

Step Hyp Ref Expression
1 uspgredgiedg.e
 |-  E = ( Edg ` G )
2 uspgredgiedg.i
 |-  I = ( iEdg ` G )
3 2 uspgrf1oedg
 |-  ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) )
4 f1of
 |-  ( I : dom I -1-1-onto-> ( Edg ` G ) -> I : dom I --> ( Edg ` G ) )
5 3 4 syl
 |-  ( G e. USPGraph -> I : dom I --> ( Edg ` G ) )
6 feq3
 |-  ( E = ( Edg ` G ) -> ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) ) )
7 1 6 ax-mp
 |-  ( I : dom I --> E <-> I : dom I --> ( Edg ` G ) )
8 5 7 sylibr
 |-  ( G e. USPGraph -> I : dom I --> E )
9 fdmeu
 |-  ( ( I : dom I --> E /\ X e. dom I ) -> E! k e. E ( I ` X ) = k )
10 8 9 sylan
 |-  ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E ( I ` X ) = k )
11 eqcom
 |-  ( k = ( I ` X ) <-> ( I ` X ) = k )
12 11 reubii
 |-  ( E! k e. E k = ( I ` X ) <-> E! k e. E ( I ` X ) = k )
13 10 12 sylibr
 |-  ( ( G e. USPGraph /\ X e. dom I ) -> E! k e. E k = ( I ` X ) )