Metamath Proof Explorer


Theorem uspgrloopvd2

Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ), the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 17-Dec-2020) (Proof shortened by AV, 21-Feb-2021)

Ref Expression
Hypothesis uspgrloopvtx.g
|- G = <. V , { <. A , { N } >. } >.
Assertion uspgrloopvd2
|- ( ( V e. W /\ A e. X /\ N e. V ) -> ( ( VtxDeg ` G ) ` N ) = 2 )

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g
 |-  G = <. V , { <. A , { N } >. } >.
2 1 uspgrloopvtx
 |-  ( V e. W -> ( Vtx ` G ) = V )
3 2 3ad2ant1
 |-  ( ( V e. W /\ A e. X /\ N e. V ) -> ( Vtx ` G ) = V )
4 simp2
 |-  ( ( V e. W /\ A e. X /\ N e. V ) -> A e. X )
5 simp3
 |-  ( ( V e. W /\ A e. X /\ N e. V ) -> N e. V )
6 1 uspgrloopiedg
 |-  ( ( V e. W /\ A e. X ) -> ( iEdg ` G ) = { <. A , { N } >. } )
7 6 3adant3
 |-  ( ( V e. W /\ A e. X /\ N e. V ) -> ( iEdg ` G ) = { <. A , { N } >. } )
8 3 4 5 7 1loopgrvd2
 |-  ( ( V e. W /\ A e. X /\ N e. V ) -> ( ( VtxDeg ` G ) ` N ) = 2 )